Metamath Proof Explorer


Theorem brcoss

Description: A and B are cosets by R : a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018)

Ref Expression
Assertion brcoss
|- ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> E. u ( u R A /\ u R B ) ) )

Proof

Step Hyp Ref Expression
1 breq2
 |-  ( x = A -> ( u R x <-> u R A ) )
2 breq2
 |-  ( y = B -> ( u R y <-> u R B ) )
3 1 2 bi2anan9
 |-  ( ( x = A /\ y = B ) -> ( ( u R x /\ u R y ) <-> ( u R A /\ u R B ) ) )
4 3 exbidv
 |-  ( ( x = A /\ y = B ) -> ( E. u ( u R x /\ u R y ) <-> E. u ( u R A /\ u R B ) ) )
5 df-coss
 |-  ,~ R = { <. x , y >. | E. u ( u R x /\ u R y ) }
6 4 5 brabga
 |-  ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> E. u ( u R A /\ u R B ) ) )