Metamath Proof Explorer


Theorem brcoss2

Description: Alternate form of the A and B are cosets by R binary relation. (Contributed by Peter Mazsa, 26-Mar-2019)

Ref Expression
Assertion brcoss2
|- ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> E. u ( A e. [ u ] R /\ B e. [ u ] R ) ) )

Proof

Step Hyp Ref Expression
1 brcoss
 |-  ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> E. u ( u R A /\ u R B ) ) )
2 exan3
 |-  ( ( A e. V /\ B e. W ) -> ( E. u ( A e. [ u ] R /\ B e. [ u ] R ) <-> E. u ( u R A /\ u R B ) ) )
3 1 2 bitr4d
 |-  ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> E. u ( A e. [ u ] R /\ B e. [ u ] R ) ) )