Metamath Proof Explorer


Theorem exan3

Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion exan3
|- ( ( A e. V /\ B e. W ) -> ( E. u ( A e. [ u ] R /\ B e. [ u ] R ) <-> E. u ( u R A /\ u R B ) ) )

Proof

Step Hyp Ref Expression
1 elecALTV
 |-  ( ( u e. _V /\ A e. V ) -> ( A e. [ u ] R <-> u R A ) )
2 1 el2v1
 |-  ( A e. V -> ( A e. [ u ] R <-> u R A ) )
3 elecALTV
 |-  ( ( u e. _V /\ B e. W ) -> ( B e. [ u ] R <-> u R B ) )
4 3 el2v1
 |-  ( B e. W -> ( B e. [ u ] R <-> u R B ) )
5 2 4 bi2anan9
 |-  ( ( A e. V /\ B e. W ) -> ( ( A e. [ u ] R /\ B e. [ u ] R ) <-> ( u R A /\ u R B ) ) )
6 5 exbidv
 |-  ( ( A e. V /\ B e. W ) -> ( E. u ( A e. [ u ] R /\ B e. [ u ] R ) <-> E. u ( u R A /\ u R B ) ) )