Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | exan3 | |- ( ( A e. V /\ B e. W ) -> ( E. u ( A e. [ u ] R /\ B e. [ u ] R ) <-> E. u ( u R A /\ u R B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecALTV | |- ( ( u e. _V /\ A e. V ) -> ( A e. [ u ] R <-> u R A ) ) |
|
2 | 1 | el2v1 | |- ( A e. V -> ( A e. [ u ] R <-> u R A ) ) |
3 | elecALTV | |- ( ( u e. _V /\ B e. W ) -> ( B e. [ u ] R <-> u R B ) ) |
|
4 | 3 | el2v1 | |- ( B e. W -> ( B e. [ u ] R <-> u R B ) ) |
5 | 2 4 | bi2anan9 | |- ( ( A e. V /\ B e. W ) -> ( ( A e. [ u ] R /\ B e. [ u ] R ) <-> ( u R A /\ u R B ) ) ) |
6 | 5 | exbidv | |- ( ( A e. V /\ B e. W ) -> ( E. u ( A e. [ u ] R /\ B e. [ u ] R ) <-> E. u ( u R A /\ u R B ) ) ) |