Metamath Proof Explorer


Theorem elecALTV

Description: Elementhood in the R -coset of A . Theorem 72 of Suppes p. 82. (I think we should replace elecg with this original form of Suppes. Peter Mazsa). (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion elecALTV
|- ( ( A e. V /\ B e. W ) -> ( B e. [ A ] R <-> A R B ) )

Proof

Step Hyp Ref Expression
1 elimasng
 |-  ( ( A e. V /\ B e. W ) -> ( B e. ( R " { A } ) <-> <. A , B >. e. R ) )
2 df-ec
 |-  [ A ] R = ( R " { A } )
3 2 eleq2i
 |-  ( B e. [ A ] R <-> B e. ( R " { A } ) )
4 df-br
 |-  ( A R B <-> <. A , B >. e. R )
5 1 3 4 3bitr4g
 |-  ( ( A e. V /\ B e. W ) -> ( B e. [ A ] R <-> A R B ) )