Description: Restricted converse epsilon binary relation. (Contributed by Peter Mazsa, 10-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | brcnvepres | |- ( ( B e. V /\ C e. W ) -> ( B ( `' _E |` A ) C <-> ( B e. A /\ C e. B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres | |- ( C e. W -> ( B ( `' _E |` A ) C <-> ( B e. A /\ B `' _E C ) ) ) |
|
2 | brcnvep | |- ( B e. V -> ( B `' _E C <-> C e. B ) ) |
|
3 | 2 | anbi2d | |- ( B e. V -> ( ( B e. A /\ B `' _E C ) <-> ( B e. A /\ C e. B ) ) ) |
4 | 1 3 | sylan9bbr | |- ( ( B e. V /\ C e. W ) -> ( B ( `' _E |` A ) C <-> ( B e. A /\ C e. B ) ) ) |