Metamath Proof Explorer


Theorem brcnvepres

Description: Restricted converse epsilon binary relation. (Contributed by Peter Mazsa, 10-Feb-2018)

Ref Expression
Assertion brcnvepres
|- ( ( B e. V /\ C e. W ) -> ( B ( `' _E |` A ) C <-> ( B e. A /\ C e. B ) ) )

Proof

Step Hyp Ref Expression
1 brres
 |-  ( C e. W -> ( B ( `' _E |` A ) C <-> ( B e. A /\ B `' _E C ) ) )
2 brcnvep
 |-  ( B e. V -> ( B `' _E C <-> C e. B ) )
3 2 anbi2d
 |-  ( B e. V -> ( ( B e. A /\ B `' _E C ) <-> ( B e. A /\ C e. B ) ) )
4 1 3 sylan9bbr
 |-  ( ( B e. V /\ C e. W ) -> ( B ( `' _E |` A ) C <-> ( B e. A /\ C e. B ) ) )