Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | brcnvep | |- ( A e. V -> ( A `' _E B <-> B e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rele | |- Rel _E |
|
2 | 1 | relbrcnv | |- ( A `' _E B <-> B _E A ) |
3 | epelg | |- ( A e. V -> ( B _E A <-> B e. A ) ) |
|
4 | 2 3 | syl5bb | |- ( A e. V -> ( A `' _E B <-> B e. A ) ) |