Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
brcnvep
Next ⟩
elecALTV
Metamath Proof Explorer
Ascii
Unicode
Theorem
brcnvep
Description:
The converse of the binary epsilon relation.
(Contributed by
Peter Mazsa
, 30-Jan-2018)
Ref
Expression
Assertion
brcnvep
⊢
A
∈
V
→
A
E
-1
B
↔
B
∈
A
Proof
Step
Hyp
Ref
Expression
1
rele
⊢
Rel
⁡
E
2
1
relbrcnv
⊢
A
E
-1
B
↔
B
E
A
3
epelg
⊢
A
∈
V
→
B
E
A
↔
B
∈
A
4
2
3
syl5bb
⊢
A
∈
V
→
A
E
-1
B
↔
B
∈
A