Description: The converse of the binary epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcnvep | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ◡ E 𝐵 ↔ 𝐵 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rele | ⊢ Rel E | |
| 2 | 1 | relbrcnv | ⊢ ( 𝐴 ◡ E 𝐵 ↔ 𝐵 E 𝐴 ) |
| 3 | epelg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 E 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 4 | 2 3 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ◡ E 𝐵 ↔ 𝐵 ∈ 𝐴 ) ) |