Description: Restricted converse epsilon binary relation. (Contributed by Peter Mazsa, 10-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | brcnvepres | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ( ◡ E ↾ 𝐴 ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brres | ⊢ ( 𝐶 ∈ 𝑊 → ( 𝐵 ( ◡ E ↾ 𝐴 ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ◡ E 𝐶 ) ) ) | |
2 | brcnvep | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ◡ E 𝐶 ↔ 𝐶 ∈ 𝐵 ) ) | |
3 | 2 | anbi2d | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 ◡ E 𝐶 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ) ) |
4 | 1 3 | sylan9bbr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ( ◡ E ↾ 𝐴 ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ) ) |