Metamath Proof Explorer


Theorem brcnvepres

Description: Restricted converse epsilon binary relation. (Contributed by Peter Mazsa, 10-Feb-2018)

Ref Expression
Assertion brcnvepres ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ( E ↾ 𝐴 ) 𝐶 ↔ ( 𝐵𝐴𝐶𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 brres ( 𝐶𝑊 → ( 𝐵 ( E ↾ 𝐴 ) 𝐶 ↔ ( 𝐵𝐴𝐵 E 𝐶 ) ) )
2 brcnvep ( 𝐵𝑉 → ( 𝐵 E 𝐶𝐶𝐵 ) )
3 2 anbi2d ( 𝐵𝑉 → ( ( 𝐵𝐴𝐵 E 𝐶 ) ↔ ( 𝐵𝐴𝐶𝐵 ) ) )
4 1 3 sylan9bbr ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ( E ↾ 𝐴 ) 𝐶 ↔ ( 𝐵𝐴𝐶𝐵 ) ) )