Metamath Proof Explorer


Theorem brres2

Description: Binary relation on a restriction. (Contributed by Peter Mazsa, 2-Jan-2019) (Revised by Peter Mazsa, 16-Dec-2021)

Ref Expression
Assertion brres2 ( 𝐵 ( 𝑅𝐴 ) 𝐶𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅𝐴 ) ) ) 𝐶 )

Proof

Step Hyp Ref Expression
1 brres ( 𝐶 ∈ ran ( 𝑅𝐴 ) → ( 𝐵 ( 𝑅𝐴 ) 𝐶 ↔ ( 𝐵𝐴𝐵 𝑅 𝐶 ) ) )
2 1 pm5.32i ( ( 𝐶 ∈ ran ( 𝑅𝐴 ) ∧ 𝐵 ( 𝑅𝐴 ) 𝐶 ) ↔ ( 𝐶 ∈ ran ( 𝑅𝐴 ) ∧ ( 𝐵𝐴𝐵 𝑅 𝐶 ) ) )
3 relres Rel ( 𝑅𝐴 )
4 3 relelrni ( 𝐵 ( 𝑅𝐴 ) 𝐶𝐶 ∈ ran ( 𝑅𝐴 ) )
5 4 pm4.71ri ( 𝐵 ( 𝑅𝐴 ) 𝐶 ↔ ( 𝐶 ∈ ran ( 𝑅𝐴 ) ∧ 𝐵 ( 𝑅𝐴 ) 𝐶 ) )
6 brinxp2 ( 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅𝐴 ) ) ) 𝐶 ↔ ( ( 𝐵𝐴𝐶 ∈ ran ( 𝑅𝐴 ) ) ∧ 𝐵 𝑅 𝐶 ) )
7 df-3an ( ( 𝐵𝐴𝐶 ∈ ran ( 𝑅𝐴 ) ∧ 𝐵 𝑅 𝐶 ) ↔ ( ( 𝐵𝐴𝐶 ∈ ran ( 𝑅𝐴 ) ) ∧ 𝐵 𝑅 𝐶 ) )
8 3anan12 ( ( 𝐵𝐴𝐶 ∈ ran ( 𝑅𝐴 ) ∧ 𝐵 𝑅 𝐶 ) ↔ ( 𝐶 ∈ ran ( 𝑅𝐴 ) ∧ ( 𝐵𝐴𝐵 𝑅 𝐶 ) ) )
9 6 7 8 3bitr2i ( 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅𝐴 ) ) ) 𝐶 ↔ ( 𝐶 ∈ ran ( 𝑅𝐴 ) ∧ ( 𝐵𝐴𝐵 𝑅 𝐶 ) ) )
10 2 5 9 3bitr4i ( 𝐵 ( 𝑅𝐴 ) 𝐶𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅𝐴 ) ) ) 𝐶 )