Step |
Hyp |
Ref |
Expression |
1 |
|
brres |
⊢ ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) → ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |
2 |
1
|
pm5.32i |
⊢ ( ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ) ↔ ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |
3 |
|
relres |
⊢ Rel ( 𝑅 ↾ 𝐴 ) |
4 |
3
|
relelrni |
⊢ ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 → 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ) |
5 |
4
|
pm4.71ri |
⊢ ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ) ) |
6 |
|
brinxp2 |
⊢ ( 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝐶 ↔ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ) ∧ 𝐵 𝑅 𝐶 ) ) |
7 |
|
df-3an |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 𝑅 𝐶 ) ↔ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ) ∧ 𝐵 𝑅 𝐶 ) ) |
8 |
|
3anan12 |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 𝑅 𝐶 ) ↔ ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |
9 |
6 7 8
|
3bitr2i |
⊢ ( 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝐶 ↔ ( 𝐶 ∈ ran ( 𝑅 ↾ 𝐴 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝐶 ) ) ) |
10 |
2 5 9
|
3bitr4i |
⊢ ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ 𝐵 ( 𝑅 ∩ ( 𝐴 × ran ( 𝑅 ↾ 𝐴 ) ) ) 𝐶 ) |