Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 9-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eldmres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑦 𝐵 ( 𝑅 ↾ 𝐴 ) 𝑦 ) ) | |
2 | brres | ⊢ ( 𝑦 ∈ V → ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝑦 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝑦 ) ) ) | |
3 | 2 | elv | ⊢ ( 𝐵 ( 𝑅 ↾ 𝐴 ) 𝑦 ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝑦 ) ) |
4 | 3 | exbii | ⊢ ( ∃ 𝑦 𝐵 ( 𝑅 ↾ 𝐴 ) 𝑦 ↔ ∃ 𝑦 ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝑦 ) ) |
5 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝐵 ∈ 𝐴 ∧ 𝐵 𝑅 𝑦 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) | |
6 | 4 5 | bitri | ⊢ ( ∃ 𝑦 𝐵 ( 𝑅 ↾ 𝐴 ) 𝑦 ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) |
7 | 1 6 | bitrdi | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) ) |