Metamath Proof Explorer


Theorem eldmres

Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 9-Jan-2019)

Ref Expression
Assertion eldmres ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 eldmg ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅𝐴 ) ↔ ∃ 𝑦 𝐵 ( 𝑅𝐴 ) 𝑦 ) )
2 brres ( 𝑦 ∈ V → ( 𝐵 ( 𝑅𝐴 ) 𝑦 ↔ ( 𝐵𝐴𝐵 𝑅 𝑦 ) ) )
3 2 elv ( 𝐵 ( 𝑅𝐴 ) 𝑦 ↔ ( 𝐵𝐴𝐵 𝑅 𝑦 ) )
4 3 exbii ( ∃ 𝑦 𝐵 ( 𝑅𝐴 ) 𝑦 ↔ ∃ 𝑦 ( 𝐵𝐴𝐵 𝑅 𝑦 ) )
5 19.42v ( ∃ 𝑦 ( 𝐵𝐴𝐵 𝑅 𝑦 ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) )
6 4 5 bitri ( ∃ 𝑦 𝐵 ( 𝑅𝐴 ) 𝑦 ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) )
7 1 6 bitrdi ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) )