Description: Elementhood in a domain. (Contributed by Peter Mazsa, 24-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldm4 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑦 ∈ [ 𝐴 ] 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑦 𝐴 𝑅 𝑦 ) ) | |
| 2 | elecALTV | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V ) → ( 𝑦 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑦 ) ) | |
| 3 | 2 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑦 ) ) |
| 4 | 3 | exbidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑦 𝑦 ∈ [ 𝐴 ] 𝑅 ↔ ∃ 𝑦 𝐴 𝑅 𝑦 ) ) |
| 5 | 1 4 | bitr4d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑦 ∈ [ 𝐴 ] 𝑅 ) ) |