Description: Elementhood in a domain. (Contributed by Peter Mazsa, 24-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | eldm4 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑦 ∈ [ 𝐴 ] 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑦 𝐴 𝑅 𝑦 ) ) | |
2 | elecALTV | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V ) → ( 𝑦 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑦 ) ) | |
3 | 2 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑦 ) ) |
4 | 3 | exbidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑦 𝑦 ∈ [ 𝐴 ] 𝑅 ↔ ∃ 𝑦 𝐴 𝑅 𝑦 ) ) |
5 | 1 4 | bitr4d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑦 ∈ [ 𝐴 ] 𝑅 ) ) |