Metamath Proof Explorer


Theorem eldmres2

Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 21-Aug-2020)

Ref Expression
Assertion eldmres2 ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 eldmres ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) )
2 eldmg ( 𝐵𝑉 → ( 𝐵 ∈ dom 𝑅 ↔ ∃ 𝑦 𝐵 𝑅 𝑦 ) )
3 eldm4 ( 𝐵𝑉 → ( 𝐵 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) )
4 2 3 bitr3d ( 𝐵𝑉 → ( ∃ 𝑦 𝐵 𝑅 𝑦 ↔ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) )
5 4 anbi2d ( 𝐵𝑉 → ( ( 𝐵𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) )
6 1 5 bitrd ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) )