Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 21-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | eldmres2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) ) | |
2 | eldmg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom 𝑅 ↔ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) | |
3 | eldm4 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) | |
4 | 2 3 | bitr3d | ⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑦 𝐵 𝑅 𝑦 ↔ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) |
5 | 4 | anbi2d | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) ) |
6 | 1 5 | bitrd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) ) |