Metamath Proof Explorer


Theorem eldm4

Description: Elementhood in a domain. (Contributed by Peter Mazsa, 24-Oct-2018)

Ref Expression
Assertion eldm4
|- ( A e. V -> ( A e. dom R <-> E. y y e. [ A ] R ) )

Proof

Step Hyp Ref Expression
1 eldmg
 |-  ( A e. V -> ( A e. dom R <-> E. y A R y ) )
2 elecALTV
 |-  ( ( A e. V /\ y e. _V ) -> ( y e. [ A ] R <-> A R y ) )
3 2 elvd
 |-  ( A e. V -> ( y e. [ A ] R <-> A R y ) )
4 3 exbidv
 |-  ( A e. V -> ( E. y y e. [ A ] R <-> E. y A R y ) )
5 1 4 bitr4d
 |-  ( A e. V -> ( A e. dom R <-> E. y y e. [ A ] R ) )