Metamath Proof Explorer


Theorem exan3

Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion exan3 ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑢 ( 𝐴 ∈ [ 𝑢 ] 𝑅𝐵 ∈ [ 𝑢 ] 𝑅 ) ↔ ∃ 𝑢 ( 𝑢 𝑅 𝐴𝑢 𝑅 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 elecALTV ( ( 𝑢 ∈ V ∧ 𝐴𝑉 ) → ( 𝐴 ∈ [ 𝑢 ] 𝑅𝑢 𝑅 𝐴 ) )
2 1 el2v1 ( 𝐴𝑉 → ( 𝐴 ∈ [ 𝑢 ] 𝑅𝑢 𝑅 𝐴 ) )
3 elecALTV ( ( 𝑢 ∈ V ∧ 𝐵𝑊 ) → ( 𝐵 ∈ [ 𝑢 ] 𝑅𝑢 𝑅 𝐵 ) )
4 3 el2v1 ( 𝐵𝑊 → ( 𝐵 ∈ [ 𝑢 ] 𝑅𝑢 𝑅 𝐵 ) )
5 2 4 bi2anan9 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴 ∈ [ 𝑢 ] 𝑅𝐵 ∈ [ 𝑢 ] 𝑅 ) ↔ ( 𝑢 𝑅 𝐴𝑢 𝑅 𝐵 ) ) )
6 5 exbidv ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑢 ( 𝐴 ∈ [ 𝑢 ] 𝑅𝐵 ∈ [ 𝑢 ] 𝑅 ) ↔ ∃ 𝑢 ( 𝑢 𝑅 𝐴𝑢 𝑅 𝐵 ) ) )