Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | exan3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑢 ( 𝐴 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 ∈ [ 𝑢 ] 𝑅 ) ↔ ∃ 𝑢 ( 𝑢 𝑅 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecALTV | ⊢ ( ( 𝑢 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∈ [ 𝑢 ] 𝑅 ↔ 𝑢 𝑅 𝐴 ) ) | |
2 | 1 | el2v1 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ [ 𝑢 ] 𝑅 ↔ 𝑢 𝑅 𝐴 ) ) |
3 | elecALTV | ⊢ ( ( 𝑢 ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ∈ [ 𝑢 ] 𝑅 ↔ 𝑢 𝑅 𝐵 ) ) | |
4 | 3 | el2v1 | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ [ 𝑢 ] 𝑅 ↔ 𝑢 𝑅 𝐵 ) ) |
5 | 2 4 | bi2anan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 ∈ [ 𝑢 ] 𝑅 ) ↔ ( 𝑢 𝑅 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) ) |
6 | 5 | exbidv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑢 ( 𝐴 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 ∈ [ 𝑢 ] 𝑅 ) ↔ ∃ 𝑢 ( 𝑢 𝑅 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) ) |