Metamath Proof Explorer


Theorem exanres

Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 2-May-2021)

Ref Expression
Assertion exanres ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝐵𝑢 ( 𝑆𝐴 ) 𝐶 ) ↔ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 brres ( 𝐵𝑉 → ( 𝑢 ( 𝑅𝐴 ) 𝐵 ↔ ( 𝑢𝐴𝑢 𝑅 𝐵 ) ) )
2 brres ( 𝐶𝑊 → ( 𝑢 ( 𝑆𝐴 ) 𝐶 ↔ ( 𝑢𝐴𝑢 𝑆 𝐶 ) ) )
3 1 2 bi2anan9 ( ( 𝐵𝑉𝐶𝑊 ) → ( ( 𝑢 ( 𝑅𝐴 ) 𝐵𝑢 ( 𝑆𝐴 ) 𝐶 ) ↔ ( ( 𝑢𝐴𝑢 𝑅 𝐵 ) ∧ ( 𝑢𝐴𝑢 𝑆 𝐶 ) ) ) )
4 anandi ( ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) ↔ ( ( 𝑢𝐴𝑢 𝑅 𝐵 ) ∧ ( 𝑢𝐴𝑢 𝑆 𝐶 ) ) )
5 3 4 bitr4di ( ( 𝐵𝑉𝐶𝑊 ) → ( ( 𝑢 ( 𝑅𝐴 ) 𝐵𝑢 ( 𝑆𝐴 ) 𝐶 ) ↔ ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) ) )
6 5 exbidv ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝐵𝑢 ( 𝑆𝐴 ) 𝐶 ) ↔ ∃ 𝑢 ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) ) )
7 df-rex ( ∃ 𝑢𝐴 ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ↔ ∃ 𝑢 ( 𝑢𝐴 ∧ ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) )
8 6 7 bitr4di ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝐵𝑢 ( 𝑆𝐴 ) 𝐶 ) ↔ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) )