Metamath Proof Explorer


Theorem exanres3

Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion exanres3 ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑢𝐴 ( 𝐵 ∈ [ 𝑢 ] 𝑅𝐶 ∈ [ 𝑢 ] 𝑆 ) ↔ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 elecALTV ( ( 𝑢 ∈ V ∧ 𝐵𝑉 ) → ( 𝐵 ∈ [ 𝑢 ] 𝑅𝑢 𝑅 𝐵 ) )
2 1 el2v1 ( 𝐵𝑉 → ( 𝐵 ∈ [ 𝑢 ] 𝑅𝑢 𝑅 𝐵 ) )
3 elecALTV ( ( 𝑢 ∈ V ∧ 𝐶𝑊 ) → ( 𝐶 ∈ [ 𝑢 ] 𝑆𝑢 𝑆 𝐶 ) )
4 3 el2v1 ( 𝐶𝑊 → ( 𝐶 ∈ [ 𝑢 ] 𝑆𝑢 𝑆 𝐶 ) )
5 2 4 bi2anan9 ( ( 𝐵𝑉𝐶𝑊 ) → ( ( 𝐵 ∈ [ 𝑢 ] 𝑅𝐶 ∈ [ 𝑢 ] 𝑆 ) ↔ ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) )
6 5 rexbidv ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑢𝐴 ( 𝐵 ∈ [ 𝑢 ] 𝑅𝐶 ∈ [ 𝑢 ] 𝑆 ) ↔ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) )