Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | exanres3 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝐵 ∈ [ 𝑢 ] 𝑅 ∧ 𝐶 ∈ [ 𝑢 ] 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecALTV | ⊢ ( ( 𝑢 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 ∈ [ 𝑢 ] 𝑅 ↔ 𝑢 𝑅 𝐵 ) ) | |
2 | 1 | el2v1 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ [ 𝑢 ] 𝑅 ↔ 𝑢 𝑅 𝐵 ) ) |
3 | elecALTV | ⊢ ( ( 𝑢 ∈ V ∧ 𝐶 ∈ 𝑊 ) → ( 𝐶 ∈ [ 𝑢 ] 𝑆 ↔ 𝑢 𝑆 𝐶 ) ) | |
4 | 3 | el2v1 | ⊢ ( 𝐶 ∈ 𝑊 → ( 𝐶 ∈ [ 𝑢 ] 𝑆 ↔ 𝑢 𝑆 𝐶 ) ) |
5 | 2 4 | bi2anan9 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐵 ∈ [ 𝑢 ] 𝑅 ∧ 𝐶 ∈ [ 𝑢 ] 𝑆 ) ↔ ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) |
6 | 5 | rexbidv | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝐵 ∈ [ 𝑢 ] 𝑅 ∧ 𝐶 ∈ [ 𝑢 ] 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) |