Metamath Proof Explorer


Theorem exanres3

Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion exanres3
|- ( ( B e. V /\ C e. W ) -> ( E. u e. A ( B e. [ u ] R /\ C e. [ u ] S ) <-> E. u e. A ( u R B /\ u S C ) ) )

Proof

Step Hyp Ref Expression
1 elecALTV
 |-  ( ( u e. _V /\ B e. V ) -> ( B e. [ u ] R <-> u R B ) )
2 1 el2v1
 |-  ( B e. V -> ( B e. [ u ] R <-> u R B ) )
3 elecALTV
 |-  ( ( u e. _V /\ C e. W ) -> ( C e. [ u ] S <-> u S C ) )
4 3 el2v1
 |-  ( C e. W -> ( C e. [ u ] S <-> u S C ) )
5 2 4 bi2anan9
 |-  ( ( B e. V /\ C e. W ) -> ( ( B e. [ u ] R /\ C e. [ u ] S ) <-> ( u R B /\ u S C ) ) )
6 5 rexbidv
 |-  ( ( B e. V /\ C e. W ) -> ( E. u e. A ( B e. [ u ] R /\ C e. [ u ] S ) <-> E. u e. A ( u R B /\ u S C ) ) )