Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exanres3 | |- ( ( B e. V /\ C e. W ) -> ( E. u e. A ( B e. [ u ] R /\ C e. [ u ] S ) <-> E. u e. A ( u R B /\ u S C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elecALTV | |- ( ( u e. _V /\ B e. V ) -> ( B e. [ u ] R <-> u R B ) ) |
|
| 2 | 1 | el2v1 | |- ( B e. V -> ( B e. [ u ] R <-> u R B ) ) |
| 3 | elecALTV | |- ( ( u e. _V /\ C e. W ) -> ( C e. [ u ] S <-> u S C ) ) |
|
| 4 | 3 | el2v1 | |- ( C e. W -> ( C e. [ u ] S <-> u S C ) ) |
| 5 | 2 4 | bi2anan9 | |- ( ( B e. V /\ C e. W ) -> ( ( B e. [ u ] R /\ C e. [ u ] S ) <-> ( u R B /\ u S C ) ) ) |
| 6 | 5 | rexbidv | |- ( ( B e. V /\ C e. W ) -> ( E. u e. A ( B e. [ u ] R /\ C e. [ u ] S ) <-> E. u e. A ( u R B /\ u S C ) ) ) |