Metamath Proof Explorer


Theorem exanres3

Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion exanres3 B V C W u A B u R C u S u A u R B u S C

Proof

Step Hyp Ref Expression
1 elecALTV u V B V B u R u R B
2 1 el2v1 B V B u R u R B
3 elecALTV u V C W C u S u S C
4 3 el2v1 C W C u S u S C
5 2 4 bi2anan9 B V C W B u R C u S u R B u S C
6 5 rexbidv B V C W u A B u R C u S u A u R B u S C