Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | exanres2 | |- ( ( B e. V /\ C e. W ) -> ( E. u ( u ( R |` A ) B /\ u ( S |` A ) C ) <-> E. u e. A ( B e. [ u ] R /\ C e. [ u ] S ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exanres | |- ( ( B e. V /\ C e. W ) -> ( E. u ( u ( R |` A ) B /\ u ( S |` A ) C ) <-> E. u e. A ( u R B /\ u S C ) ) ) |
|
2 | exanres3 | |- ( ( B e. V /\ C e. W ) -> ( E. u e. A ( B e. [ u ] R /\ C e. [ u ] S ) <-> E. u e. A ( u R B /\ u S C ) ) ) |
|
3 | 1 2 | bitr4d | |- ( ( B e. V /\ C e. W ) -> ( E. u ( u ( R |` A ) B /\ u ( S |` A ) C ) <-> E. u e. A ( B e. [ u ] R /\ C e. [ u ] S ) ) ) |