Metamath Proof Explorer


Theorem exanres2

Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion exanres2 ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝐵𝑢 ( 𝑆𝐴 ) 𝐶 ) ↔ ∃ 𝑢𝐴 ( 𝐵 ∈ [ 𝑢 ] 𝑅𝐶 ∈ [ 𝑢 ] 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 exanres ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝐵𝑢 ( 𝑆𝐴 ) 𝐶 ) ↔ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) )
2 exanres3 ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑢𝐴 ( 𝐵 ∈ [ 𝑢 ] 𝑅𝐶 ∈ [ 𝑢 ] 𝑆 ) ↔ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝐵𝑢 𝑆 𝐶 ) ) )
3 1 2 bitr4d ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝐵𝑢 ( 𝑆𝐴 ) 𝐶 ) ↔ ∃ 𝑢𝐴 ( 𝐵 ∈ [ 𝑢 ] 𝑅𝐶 ∈ [ 𝑢 ] 𝑆 ) ) )