Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | exanres2 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝐶 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝐵 ∈ [ 𝑢 ] 𝑅 ∧ 𝐶 ∈ [ 𝑢 ] 𝑆 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exanres | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝐶 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) | |
2 | exanres3 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝐵 ∈ [ 𝑢 ] 𝑅 ∧ 𝐶 ∈ [ 𝑢 ] 𝑆 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 𝑅 𝐵 ∧ 𝑢 𝑆 𝐶 ) ) ) | |
3 | 1 2 | bitr4d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝐵 ∧ 𝑢 ( 𝑆 ↾ 𝐴 ) 𝐶 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝐵 ∈ [ 𝑢 ] 𝑅 ∧ 𝐶 ∈ [ 𝑢 ] 𝑆 ) ) ) |