Metamath Proof Explorer


Theorem exan3

Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion exan3 A V B W u A u R B u R u u R A u R B

Proof

Step Hyp Ref Expression
1 elecALTV u V A V A u R u R A
2 1 el2v1 A V A u R u R A
3 elecALTV u V B W B u R u R B
4 3 el2v1 B W B u R u R B
5 2 4 bi2anan9 A V B W A u R B u R u R A u R B
6 5 exbidv A V B W u A u R B u R u u R A u R B