Metamath Proof Explorer


Theorem exan3

Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion exan3 AVBWuAuRBuRuuRAuRB

Proof

Step Hyp Ref Expression
1 elecALTV uVAVAuRuRA
2 1 el2v1 AVAuRuRA
3 elecALTV uVBWBuRuRB
4 3 el2v1 BWBuRuRB
5 2 4 bi2anan9 AVBWAuRBuRuRAuRB
6 5 exbidv AVBWuAuRBuRuuRAuRB