Metamath Proof Explorer


Theorem brcoss2

Description: Alternate form of the A and B are cosets by R binary relation. (Contributed by Peter Mazsa, 26-Mar-2019)

Ref Expression
Assertion brcoss2 ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑢 ( 𝐴 ∈ [ 𝑢 ] 𝑅𝐵 ∈ [ 𝑢 ] 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 brcoss ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑢 ( 𝑢 𝑅 𝐴𝑢 𝑅 𝐵 ) ) )
2 exan3 ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑢 ( 𝐴 ∈ [ 𝑢 ] 𝑅𝐵 ∈ [ 𝑢 ] 𝑅 ) ↔ ∃ 𝑢 ( 𝑢 𝑅 𝐴𝑢 𝑅 𝐵 ) ) )
3 1 2 bitr4d ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑢 ( 𝐴 ∈ [ 𝑢 ] 𝑅𝐵 ∈ [ 𝑢 ] 𝑅 ) ) )