Metamath Proof Explorer


Theorem brcoss

Description: A and B are cosets by R : a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018)

Ref Expression
Assertion brcoss A V B W A R B u u R A u R B

Proof

Step Hyp Ref Expression
1 breq2 x = A u R x u R A
2 breq2 y = B u R y u R B
3 1 2 bi2anan9 x = A y = B u R x u R y u R A u R B
4 3 exbidv x = A y = B u u R x u R y u u R A u R B
5 df-coss R = x y | u u R x u R y
6 4 5 brabga A V B W A R B u u R A u R B