Metamath Proof Explorer


Theorem cossssid5

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion cossssid5
|- ( ,~ R C_ _I <-> A. x e. ran R A. y e. ran R ( x = y \/ ( [ x ] `' R i^i [ y ] `' R ) = (/) ) )

Proof

Step Hyp Ref Expression
1 cossssid4
 |-  ( ,~ R C_ _I <-> A. u E* x u R x )
2 ineccnvmo2
 |-  ( A. x e. ran R A. y e. ran R ( x = y \/ ( [ x ] `' R i^i [ y ] `' R ) = (/) ) <-> A. u E* x u R x )
3 1 2 bitr4i
 |-  ( ,~ R C_ _I <-> A. x e. ran R A. y e. ran R ( x = y \/ ( [ x ] `' R i^i [ y ] `' R ) = (/) ) )