Metamath Proof Explorer


Theorem cossssid2

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019)

Ref Expression
Assertion cossssid2 R I x y u u R x u R y x = y

Proof

Step Hyp Ref Expression
1 df-id I = x y | x = y
2 1 sseq2i R I R x y | x = y
3 df-coss R = x y | u u R x u R y
4 3 sseq1i R x y | x = y x y | u u R x u R y x y | x = y
5 ssopab2bw x y | u u R x u R y x y | x = y x y u u R x u R y x = y
6 2 4 5 3bitri R I x y u u R x u R y x = y