Description: The class of cosets by R is reflexive, see dfrefrel2 . (Contributed by Peter Mazsa, 30-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | refrelcoss2 | ⊢ ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelcoss3 | ⊢ ( ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ∧ Rel ≀ 𝑅 ) | |
2 | idinxpss | ⊢ ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ↔ ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ) | |
3 | 2 | anbi1i | ⊢ ( ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) ↔ ( ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ∧ Rel ≀ 𝑅 ) ) |
4 | 1 3 | mpbir | ⊢ ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) |