Metamath Proof Explorer


Theorem refrelcoss2

Description: The class of cosets by R is reflexive, see dfrefrel2 . (Contributed by Peter Mazsa, 30-Jul-2019)

Ref Expression
Assertion refrelcoss2 ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 )

Proof

Step Hyp Ref Expression
1 refrelcoss3 ( ∀ 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦𝑥𝑅 𝑦 ) ∧ Rel ≀ 𝑅 )
2 idinxpss ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ↔ ∀ 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦𝑥𝑅 𝑦 ) )
3 2 anbi1i ( ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 ) ↔ ( ∀ 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦𝑥𝑅 𝑦 ) ∧ Rel ≀ 𝑅 ) )
4 1 3 mpbir ( ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅 )