Metamath Proof Explorer


Theorem idinxpss

Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019)

Ref Expression
Assertion idinxpss ( ( I ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑅 ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) )

Proof

Step Hyp Ref Expression
1 inxpss ( ( I ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑅 ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 I 𝑦𝑥 𝑅 𝑦 ) )
2 ideqg ( 𝑦 ∈ V → ( 𝑥 I 𝑦𝑥 = 𝑦 ) )
3 2 elv ( 𝑥 I 𝑦𝑥 = 𝑦 )
4 3 imbi1i ( ( 𝑥 I 𝑦𝑥 𝑅 𝑦 ) ↔ ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) )
5 4 2ralbii ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 I 𝑦𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) )
6 1 5 bitri ( ( I ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑅 ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) )