Metamath Proof Explorer


Theorem idinxpss

Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019)

Ref Expression
Assertion idinxpss IA×BRxAyBx=yxRy

Proof

Step Hyp Ref Expression
1 inxpss IA×BRxAyBxIyxRy
2 ideqg yVxIyx=y
3 2 elv xIyx=y
4 3 imbi1i xIyxRyx=yxRy
5 4 2ralbii xAyBxIyxRyxAyBx=yxRy
6 1 5 bitri IA×BRxAyBx=yxRy