Metamath Proof Explorer


Theorem idinxpss

Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019)

Ref Expression
Assertion idinxpss I A × B R x A y B x = y x R y

Proof

Step Hyp Ref Expression
1 inxpss I A × B R x A y B x I y x R y
2 ideqg y V x I y x = y
3 2 elv x I y x = y
4 3 imbi1i x I y x R y x = y x R y
5 4 2ralbii x A y B x I y x R y x A y B x = y x R y
6 1 5 bitri I A × B R x A y B x = y x R y