Metamath Proof Explorer


Theorem inxpss

Description: Two ways to say that an intersection with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019)

Ref Expression
Assertion inxpss RA×BSxAyBxRyxSy

Proof

Step Hyp Ref Expression
1 brinxp2 xRA×ByxAyBxRy
2 1 imbi1i xRA×ByxSyxAyBxRyxSy
3 impexp xAyBxRyxSyxAyBxRyxSy
4 2 3 bitri xRA×ByxSyxAyBxRyxSy
5 4 2albii xyxRA×ByxSyxyxAyBxRyxSy
6 relinxp RelRA×B
7 ssrel3 RelRA×BRA×BSxyxRA×ByxSy
8 6 7 ax-mp RA×BSxyxRA×ByxSy
9 r2al xAyBxRyxSyxyxAyBxRyxSy
10 5 8 9 3bitr4i RA×BSxAyBxRyxSy