| Step |
Hyp |
Ref |
Expression |
| 1 |
|
refrelcosslem |
⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 |
| 2 |
|
idinxpssinxp4 |
⊢ ( ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ dom ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 ) |
| 3 |
1 2
|
mpbir |
⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ dom ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) |
| 4 |
|
rncossdmcoss |
⊢ ran ≀ 𝑅 = dom ≀ 𝑅 |
| 5 |
4
|
raleqi |
⊢ ( ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ↔ ∀ 𝑦 ∈ dom ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ) |
| 6 |
5
|
ralbii |
⊢ ( ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ dom ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ) |
| 7 |
3 6
|
mpbir |
⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) |
| 8 |
|
relcoss |
⊢ Rel ≀ 𝑅 |
| 9 |
7 8
|
pm3.2i |
⊢ ( ∀ 𝑥 ∈ dom ≀ 𝑅 ∀ 𝑦 ∈ ran ≀ 𝑅 ( 𝑥 = 𝑦 → 𝑥 ≀ 𝑅 𝑦 ) ∧ Rel ≀ 𝑅 ) |