Description: Lemma for the left side of the refrelcoss3 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | refrelcosslem | ⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralel | ⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ∈ dom ≀ 𝑅 | |
2 | eldmcoss2 | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅 𝑥 ) ) | |
3 | 2 | elv | ⊢ ( 𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅 𝑥 ) |
4 | 3 | ralbii | ⊢ ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ∈ dom ≀ 𝑅 ↔ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 ) |
5 | 1 4 | mpbi | ⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 |