Description: Lemma for the left side of the refrelcoss3 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refrelcosslem | ⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralel | ⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ∈ dom ≀ 𝑅 | |
| 2 | eldmcoss2 | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅 𝑥 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅 𝑥 ) |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ∈ dom ≀ 𝑅 ↔ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 ) |
| 5 | 1 4 | mpbi | ⊢ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ≀ 𝑅 𝑥 |