Metamath Proof Explorer


Theorem refrelcosslem

Description: Lemma for the left side of the refrelcoss3 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019)

Ref Expression
Assertion refrelcosslem 𝑥 ∈ dom ≀ 𝑅 𝑥𝑅 𝑥

Proof

Step Hyp Ref Expression
1 ralel 𝑥 ∈ dom ≀ 𝑅 𝑥 ∈ dom ≀ 𝑅
2 eldmcoss2 ( 𝑥 ∈ V → ( 𝑥 ∈ dom ≀ 𝑅𝑥𝑅 𝑥 ) )
3 2 elv ( 𝑥 ∈ dom ≀ 𝑅𝑥𝑅 𝑥 )
4 3 ralbii ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥 ∈ dom ≀ 𝑅 ↔ ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥𝑅 𝑥 )
5 1 4 mpbi 𝑥 ∈ dom ≀ 𝑅 𝑥𝑅 𝑥