Description: The range of cosets is the domain of them (this should be rncoss but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | rncossdmcoss | ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcosscnvcoss | ⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ≀ 𝑅 𝑥 ↔ 𝑥 ≀ 𝑅 𝑦 ) ) | |
2 | 1 | el2v | ⊢ ( 𝑦 ≀ 𝑅 𝑥 ↔ 𝑥 ≀ 𝑅 𝑦 ) |
3 | 2 | exbii | ⊢ ( ∃ 𝑦 𝑦 ≀ 𝑅 𝑥 ↔ ∃ 𝑦 𝑥 ≀ 𝑅 𝑦 ) |
4 | 3 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑦 ≀ 𝑅 𝑥 } = { 𝑥 ∣ ∃ 𝑦 𝑥 ≀ 𝑅 𝑦 } |
5 | dfrn2 | ⊢ ran ≀ 𝑅 = { 𝑥 ∣ ∃ 𝑦 𝑦 ≀ 𝑅 𝑥 } | |
6 | df-dm | ⊢ dom ≀ 𝑅 = { 𝑥 ∣ ∃ 𝑦 𝑥 ≀ 𝑅 𝑦 } | |
7 | 4 5 6 | 3eqtr4i | ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 |