Description: The range of cosets is the domain of them (this should be rncoss but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rncossdmcoss | |- ran ,~ R = dom ,~ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcosscnvcoss | |- ( ( y e. _V /\ x e. _V ) -> ( y ,~ R x <-> x ,~ R y ) ) |
|
| 2 | 1 | el2v | |- ( y ,~ R x <-> x ,~ R y ) |
| 3 | 2 | exbii | |- ( E. y y ,~ R x <-> E. y x ,~ R y ) |
| 4 | 3 | abbii | |- { x | E. y y ,~ R x } = { x | E. y x ,~ R y } |
| 5 | dfrn2 | |- ran ,~ R = { x | E. y y ,~ R x } |
|
| 6 | df-dm | |- dom ,~ R = { x | E. y x ,~ R y } |
|
| 7 | 4 5 6 | 3eqtr4i | |- ran ,~ R = dom ,~ R |