Metamath Proof Explorer


Theorem rncossdmcoss

Description: The range of cosets is the domain of them (this should be rncoss but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019)

Ref Expression
Assertion rncossdmcoss
|- ran ,~ R = dom ,~ R

Proof

Step Hyp Ref Expression
1 brcosscnvcoss
 |-  ( ( y e. _V /\ x e. _V ) -> ( y ,~ R x <-> x ,~ R y ) )
2 1 el2v
 |-  ( y ,~ R x <-> x ,~ R y )
3 2 exbii
 |-  ( E. y y ,~ R x <-> E. y x ,~ R y )
4 3 abbii
 |-  { x | E. y y ,~ R x } = { x | E. y x ,~ R y }
5 dfrn2
 |-  ran ,~ R = { x | E. y y ,~ R x }
6 df-dm
 |-  dom ,~ R = { x | E. y x ,~ R y }
7 4 5 6 3eqtr4i
 |-  ran ,~ R = dom ,~ R