Metamath Proof Explorer


Theorem rncossdmcoss

Description: The range of cosets is the domain of them (this should be rncoss but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019)

Ref Expression
Assertion rncossdmcoss ran R = dom R

Proof

Step Hyp Ref Expression
1 brcosscnvcoss y V x V y R x x R y
2 1 el2v y R x x R y
3 2 exbii y y R x y x R y
4 3 abbii x | y y R x = x | y x R y
5 dfrn2 ran R = x | y y R x
6 df-dm dom R = x | y x R y
7 4 5 6 3eqtr4i ran R = dom R