Metamath Proof Explorer


Theorem rncossdmcoss

Description: The range of cosets is the domain of them (this should be rncoss but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019)

Ref Expression
Assertion rncossdmcoss ranR=domR

Proof

Step Hyp Ref Expression
1 brcosscnvcoss yVxVyRxxRy
2 1 el2v yRxxRy
3 2 exbii yyRxyxRy
4 3 abbii x|yyRx=x|yxRy
5 dfrn2 ranR=x|yyRx
6 df-dm domR=x|yxRy
7 4 5 6 3eqtr4i ranR=domR