Description: The class of cosets by R is reflexive, see dfrefrel2 . (Contributed by Peter Mazsa, 30-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | refrelcoss2 | |- ( ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R /\ Rel ,~ R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelcoss3 | |- ( A. x e. dom ,~ R A. y e. ran ,~ R ( x = y -> x ,~ R y ) /\ Rel ,~ R ) |
|
2 | idinxpss | |- ( ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R <-> A. x e. dom ,~ R A. y e. ran ,~ R ( x = y -> x ,~ R y ) ) |
|
3 | 2 | anbi1i | |- ( ( ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R /\ Rel ,~ R ) <-> ( A. x e. dom ,~ R A. y e. ran ,~ R ( x = y -> x ,~ R y ) /\ Rel ,~ R ) ) |
4 | 1 3 | mpbir | |- ( ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R /\ Rel ,~ R ) |