Step |
Hyp |
Ref |
Expression |
1 |
|
iss2 |
|- ( ,~ R C_ _I <-> ,~ R = ( _I i^i ( dom ,~ R X. ran ,~ R ) ) ) |
2 |
|
refrelcoss2 |
|- ( ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R /\ Rel ,~ R ) |
3 |
2
|
simpli |
|- ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R |
4 |
|
eqss |
|- ( ,~ R = ( _I i^i ( dom ,~ R X. ran ,~ R ) ) <-> ( ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) /\ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) C_ ,~ R ) ) |
5 |
3 4
|
mpbiran2 |
|- ( ,~ R = ( _I i^i ( dom ,~ R X. ran ,~ R ) ) <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) ) |
6 |
1 5
|
bitri |
|- ( ,~ R C_ _I <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) ) |