Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
|- ( A C_ _I -> ( <. x , y >. e. A -> <. x , y >. e. _I ) ) |
2 |
|
vex |
|- x e. _V |
3 |
|
vex |
|- y e. _V |
4 |
2 3
|
opeldm |
|- ( <. x , y >. e. A -> x e. dom A ) |
5 |
1 4
|
jca2 |
|- ( A C_ _I -> ( <. x , y >. e. A -> ( <. x , y >. e. _I /\ x e. dom A ) ) ) |
6 |
2 3
|
opelrn |
|- ( <. x , y >. e. A -> y e. ran A ) |
7 |
1 6
|
jca2 |
|- ( A C_ _I -> ( <. x , y >. e. A -> ( <. x , y >. e. _I /\ y e. ran A ) ) ) |
8 |
5 7
|
jcad |
|- ( A C_ _I -> ( <. x , y >. e. A -> ( ( <. x , y >. e. _I /\ x e. dom A ) /\ ( <. x , y >. e. _I /\ y e. ran A ) ) ) ) |
9 |
|
anandi |
|- ( ( <. x , y >. e. _I /\ ( x e. dom A /\ y e. ran A ) ) <-> ( ( <. x , y >. e. _I /\ x e. dom A ) /\ ( <. x , y >. e. _I /\ y e. ran A ) ) ) |
10 |
8 9
|
syl6ibr |
|- ( A C_ _I -> ( <. x , y >. e. A -> ( <. x , y >. e. _I /\ ( x e. dom A /\ y e. ran A ) ) ) ) |
11 |
|
df-br |
|- ( x _I y <-> <. x , y >. e. _I ) |
12 |
3
|
ideq |
|- ( x _I y <-> x = y ) |
13 |
11 12
|
bitr3i |
|- ( <. x , y >. e. _I <-> x = y ) |
14 |
2
|
eldm2 |
|- ( x e. dom A <-> E. y <. x , y >. e. A ) |
15 |
|
opeq2 |
|- ( x = y -> <. x , x >. = <. x , y >. ) |
16 |
15
|
eleq1d |
|- ( x = y -> ( <. x , x >. e. A <-> <. x , y >. e. A ) ) |
17 |
16
|
biimprcd |
|- ( <. x , y >. e. A -> ( x = y -> <. x , x >. e. A ) ) |
18 |
13 17
|
syl5bi |
|- ( <. x , y >. e. A -> ( <. x , y >. e. _I -> <. x , x >. e. A ) ) |
19 |
1 18
|
sylcom |
|- ( A C_ _I -> ( <. x , y >. e. A -> <. x , x >. e. A ) ) |
20 |
19
|
exlimdv |
|- ( A C_ _I -> ( E. y <. x , y >. e. A -> <. x , x >. e. A ) ) |
21 |
14 20
|
syl5bi |
|- ( A C_ _I -> ( x e. dom A -> <. x , x >. e. A ) ) |
22 |
16
|
imbi2d |
|- ( x = y -> ( ( x e. dom A -> <. x , x >. e. A ) <-> ( x e. dom A -> <. x , y >. e. A ) ) ) |
23 |
21 22
|
syl5ibcom |
|- ( A C_ _I -> ( x = y -> ( x e. dom A -> <. x , y >. e. A ) ) ) |
24 |
23
|
imp |
|- ( ( A C_ _I /\ x = y ) -> ( x e. dom A -> <. x , y >. e. A ) ) |
25 |
24
|
adantrd |
|- ( ( A C_ _I /\ x = y ) -> ( ( x e. dom A /\ y e. ran A ) -> <. x , y >. e. A ) ) |
26 |
25
|
ex |
|- ( A C_ _I -> ( x = y -> ( ( x e. dom A /\ y e. ran A ) -> <. x , y >. e. A ) ) ) |
27 |
13 26
|
syl5bi |
|- ( A C_ _I -> ( <. x , y >. e. _I -> ( ( x e. dom A /\ y e. ran A ) -> <. x , y >. e. A ) ) ) |
28 |
27
|
impd |
|- ( A C_ _I -> ( ( <. x , y >. e. _I /\ ( x e. dom A /\ y e. ran A ) ) -> <. x , y >. e. A ) ) |
29 |
10 28
|
impbid |
|- ( A C_ _I -> ( <. x , y >. e. A <-> ( <. x , y >. e. _I /\ ( x e. dom A /\ y e. ran A ) ) ) ) |
30 |
|
opelinxp |
|- ( <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) <-> ( ( x e. dom A /\ y e. ran A ) /\ <. x , y >. e. _I ) ) |
31 |
30
|
biancomi |
|- ( <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) <-> ( <. x , y >. e. _I /\ ( x e. dom A /\ y e. ran A ) ) ) |
32 |
29 31
|
bitr4di |
|- ( A C_ _I -> ( <. x , y >. e. A <-> <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) ) ) |
33 |
32
|
alrimivv |
|- ( A C_ _I -> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) ) ) |
34 |
|
reli |
|- Rel _I |
35 |
|
relss |
|- ( A C_ _I -> ( Rel _I -> Rel A ) ) |
36 |
34 35
|
mpi |
|- ( A C_ _I -> Rel A ) |
37 |
|
relinxp |
|- Rel ( _I i^i ( dom A X. ran A ) ) |
38 |
|
eqrel |
|- ( ( Rel A /\ Rel ( _I i^i ( dom A X. ran A ) ) ) -> ( A = ( _I i^i ( dom A X. ran A ) ) <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) ) ) ) |
39 |
36 37 38
|
sylancl |
|- ( A C_ _I -> ( A = ( _I i^i ( dom A X. ran A ) ) <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. ( _I i^i ( dom A X. ran A ) ) ) ) ) |
40 |
33 39
|
mpbird |
|- ( A C_ _I -> A = ( _I i^i ( dom A X. ran A ) ) ) |
41 |
|
inss1 |
|- ( _I i^i ( dom A X. ran A ) ) C_ _I |
42 |
|
sseq1 |
|- ( A = ( _I i^i ( dom A X. ran A ) ) -> ( A C_ _I <-> ( _I i^i ( dom A X. ran A ) ) C_ _I ) ) |
43 |
41 42
|
mpbiri |
|- ( A = ( _I i^i ( dom A X. ran A ) ) -> A C_ _I ) |
44 |
40 43
|
impbii |
|- ( A C_ _I <-> A = ( _I i^i ( dom A X. ran A ) ) ) |