Description: Subclass theorem for relation predicate. Theorem 2 of Suppes p. 58. (Contributed by NM, 15-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | relss | |- ( A C_ B -> ( Rel B -> Rel A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 | |- ( A C_ B -> ( B C_ ( _V X. _V ) -> A C_ ( _V X. _V ) ) ) |
|
2 | df-rel | |- ( Rel B <-> B C_ ( _V X. _V ) ) |
|
3 | df-rel | |- ( Rel A <-> A C_ ( _V X. _V ) ) |
|
4 | 1 2 3 | 3imtr4g | |- ( A C_ B -> ( Rel B -> Rel A ) ) |