Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brelrn.1 | |- A e. _V |
|
brelrn.2 | |- B e. _V |
||
Assertion | opelrn | |- ( <. A , B >. e. C -> B e. ran C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brelrn.1 | |- A e. _V |
|
2 | brelrn.2 | |- B e. _V |
|
3 | df-br | |- ( A C B <-> <. A , B >. e. C ) |
|
4 | 1 2 | brelrn | |- ( A C B -> B e. ran C ) |
5 | 3 4 | sylbir | |- ( <. A , B >. e. C -> B e. ran C ) |