Metamath Proof Explorer


Theorem opelrn

Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997)

Ref Expression
Hypotheses brelrn.1
|- A e. _V
brelrn.2
|- B e. _V
Assertion opelrn
|- ( <. A , B >. e. C -> B e. ran C )

Proof

Step Hyp Ref Expression
1 brelrn.1
 |-  A e. _V
2 brelrn.2
 |-  B e. _V
3 df-br
 |-  ( A C B <-> <. A , B >. e. C )
4 1 2 brelrn
 |-  ( A C B -> B e. ran C )
5 3 4 sylbir
 |-  ( <. A , B >. e. C -> B e. ran C )