Metamath Proof Explorer


Theorem eldmcnv

Description: Elementhood in a domain of a converse. (Contributed by Peter Mazsa, 25-May-2018)

Ref Expression
Assertion eldmcnv
|- ( A e. V -> ( A e. dom `' R <-> E. u u R A ) )

Proof

Step Hyp Ref Expression
1 eldmg
 |-  ( A e. V -> ( A e. dom `' R <-> E. u A `' R u ) )
2 brcnvg
 |-  ( ( A e. V /\ u e. _V ) -> ( A `' R u <-> u R A ) )
3 2 elvd
 |-  ( A e. V -> ( A `' R u <-> u R A ) )
4 3 exbidv
 |-  ( A e. V -> ( E. u A `' R u <-> E. u u R A ) )
5 1 4 bitrd
 |-  ( A e. V -> ( A e. dom `' R <-> E. u u R A ) )