Metamath Proof Explorer


Theorem eldmcnv

Description: Elementhood in a domain of a converse. (Contributed by Peter Mazsa, 25-May-2018)

Ref Expression
Assertion eldmcnv ( 𝐴𝑉 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑢 𝑢 𝑅 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eldmg ( 𝐴𝑉 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑢 𝐴 𝑅 𝑢 ) )
2 brcnvg ( ( 𝐴𝑉𝑢 ∈ V ) → ( 𝐴 𝑅 𝑢𝑢 𝑅 𝐴 ) )
3 2 elvd ( 𝐴𝑉 → ( 𝐴 𝑅 𝑢𝑢 𝑅 𝐴 ) )
4 3 exbidv ( 𝐴𝑉 → ( ∃ 𝑢 𝐴 𝑅 𝑢 ↔ ∃ 𝑢 𝑢 𝑅 𝐴 ) )
5 1 4 bitrd ( 𝐴𝑉 → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑢 𝑢 𝑅 𝐴 ) )