Description: The class of cosets by R is symmetric, see dfsymrel2 . (Contributed by Peter Mazsa, 27-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | symrelcoss2 | |- ( `' ,~ R C_ ,~ R /\ Rel ,~ R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symrelcoss3 | |- ( A. x A. y ( x ,~ R y -> y ,~ R x ) /\ Rel ,~ R ) |
|
2 | cnvsym | |- ( `' ,~ R C_ ,~ R <-> A. x A. y ( x ,~ R y -> y ,~ R x ) ) |
|
3 | 2 | anbi1i | |- ( ( `' ,~ R C_ ,~ R /\ Rel ,~ R ) <-> ( A. x A. y ( x ,~ R y -> y ,~ R x ) /\ Rel ,~ R ) ) |
4 | 1 3 | mpbir | |- ( `' ,~ R C_ ,~ R /\ Rel ,~ R ) |