Description: The class of cosets by R is symmetric, see dfsymrel2 . (Contributed by Peter Mazsa, 27-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symrelcoss2 | |- ( `' ,~ R C_ ,~ R /\ Rel ,~ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symrelcoss3 | |- ( A. x A. y ( x ,~ R y -> y ,~ R x ) /\ Rel ,~ R ) |
|
| 2 | cnvsym | |- ( `' ,~ R C_ ,~ R <-> A. x A. y ( x ,~ R y -> y ,~ R x ) ) |
|
| 3 | 2 | anbi1i | |- ( ( `' ,~ R C_ ,~ R /\ Rel ,~ R ) <-> ( A. x A. y ( x ,~ R y -> y ,~ R x ) /\ Rel ,~ R ) ) |
| 4 | 1 3 | mpbir | |- ( `' ,~ R C_ ,~ R /\ Rel ,~ R ) |