Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elsymrels2 | |- ( R e. SymRels <-> ( `' R C_ R /\ R e. Rels ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsymrels2 | |- SymRels = { r e. Rels | `' r C_ r } |
|
2 | cnveq | |- ( r = R -> `' r = `' R ) |
|
3 | id | |- ( r = R -> r = R ) |
|
4 | 2 3 | sseq12d | |- ( r = R -> ( `' r C_ r <-> `' R C_ R ) ) |
5 | 1 4 | rabeqel | |- ( R e. SymRels <-> ( `' R C_ R /\ R e. Rels ) ) |