Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsymrels2 | |- ( R e. SymRels <-> ( `' R C_ R /\ R e. Rels ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsymrels2 |  |-  SymRels = { r e. Rels | `' r C_ r } | |
| 2 | cnveq | |- ( r = R -> `' r = `' R ) | |
| 3 | id | |- ( r = R -> r = R ) | |
| 4 | 2 3 | sseq12d | |- ( r = R -> ( `' r C_ r <-> `' R C_ R ) ) | 
| 5 | 1 4 | rabeqel | |- ( R e. SymRels <-> ( `' R C_ R /\ R e. Rels ) ) |