Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsymrels2 | ⊢ ( 𝑅 ∈ SymRels ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsymrels2 | ⊢ SymRels = { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } | |
| 2 | cnveq | ⊢ ( 𝑟 = 𝑅 → ◡ 𝑟 = ◡ 𝑅 ) | |
| 3 | id | ⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) | |
| 4 | 2 3 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ◡ 𝑟 ⊆ 𝑟 ↔ ◡ 𝑅 ⊆ 𝑅 ) ) |
| 5 | 1 4 | rabeqel | ⊢ ( 𝑅 ∈ SymRels ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ) |