Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elsymrels2 | ⊢ ( 𝑅 ∈ SymRels ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsymrels2 | ⊢ SymRels = { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } | |
2 | cnveq | ⊢ ( 𝑟 = 𝑅 → ◡ 𝑟 = ◡ 𝑅 ) | |
3 | id | ⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) | |
4 | 2 3 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ◡ 𝑟 ⊆ 𝑟 ↔ ◡ 𝑅 ⊆ 𝑅 ) ) |
5 | 1 4 | rabeqel | ⊢ ( 𝑅 ∈ SymRels ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ) |