Metamath Proof Explorer


Theorem ereq2

Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion ereq2 A=BRErARErB

Proof

Step Hyp Ref Expression
1 eqeq2 A=BdomR=AdomR=B
2 1 3anbi2d A=BRelRdomR=AR-1RRRRelRdomR=BR-1RRR
3 df-er RErARelRdomR=AR-1RRR
4 df-er RErBRelRdomR=BR-1RRR
5 2 3 4 3bitr4g A=BRErARErB