Metamath Proof Explorer


Theorem ertrd

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ersymb.1 φRErX
ertrd.5 φARB
ertrd.6 φBRC
Assertion ertrd φARC

Proof

Step Hyp Ref Expression
1 ersymb.1 φRErX
2 ertrd.5 φARB
3 ertrd.6 φBRC
4 1 ertr φARBBRCARC
5 2 3 4 mp2and φARC