Metamath Proof Explorer


Theorem ertr

Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis ersymb.1 φ R Er X
Assertion ertr φ A R B B R C A R C

Proof

Step Hyp Ref Expression
1 ersymb.1 φ R Er X
2 errel R Er X Rel R
3 1 2 syl φ Rel R
4 simpr A R B B R C B R C
5 brrelex1 Rel R B R C B V
6 3 4 5 syl2an φ A R B B R C B V
7 simpr φ A R B B R C A R B B R C
8 breq2 x = B A R x A R B
9 breq1 x = B x R C B R C
10 8 9 anbi12d x = B A R x x R C A R B B R C
11 6 7 10 spcedv φ A R B B R C x A R x x R C
12 simpl A R B B R C A R B
13 brrelex1 Rel R A R B A V
14 3 12 13 syl2an φ A R B B R C A V
15 brrelex2 Rel R B R C C V
16 3 4 15 syl2an φ A R B B R C C V
17 brcog A V C V A R R C x A R x x R C
18 14 16 17 syl2anc φ A R B B R C A R R C x A R x x R C
19 11 18 mpbird φ A R B B R C A R R C
20 19 ex φ A R B B R C A R R C
21 df-er R Er X Rel R dom R = X R -1 R R R
22 21 simp3bi R Er X R -1 R R R
23 1 22 syl φ R -1 R R R
24 23 unssbd φ R R R
25 24 ssbrd φ A R R C A R C
26 20 25 syld φ A R B B R C A R C