Metamath Proof Explorer


Theorem euen1

Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion euen1 ∃!xφx|φ1𝑜

Proof

Step Hyp Ref Expression
1 reuen1 ∃!xVφxV|φ1𝑜
2 reuv ∃!xVφ∃!xφ
3 rabab xV|φ=x|φ
4 3 breq1i xV|φ1𝑜x|φ1𝑜
5 1 2 4 3bitr3i ∃!xφx|φ1𝑜