Metamath Proof Explorer


Theorem euen1b

Description: Two ways to express " A has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion euen1b A1𝑜∃!xxA

Proof

Step Hyp Ref Expression
1 euen1 ∃!xxAx|xA1𝑜
2 abid2 x|xA=A
3 2 breq1i x|xA1𝑜A1𝑜
4 1 3 bitr2i A1𝑜∃!xxA